
MANAGING CONFIGURATION OF GROUND SOFTWARE APPLICATIONS
WITH GLUEWARE

Barbara Larsen Randy Herrera Tadas Sesplaukis
Jet Propulsion Laboratory Jet Propulsion Laboratory Jet Propulsion Laboratory
4800 Oak Grove Dr. 4800 Oak Grove Dr. 4800 Oak Grove Dr.
Pasadena, CA 91109 Pasadena, CA 91109 Pasadena, CA 91109
Barbara.S.Larsen@jpl.nasa.gov Randy.G.Herrera@jpl.nasa.gov Tadas.Sesplaukis@jpl.nasa.gov

Leo Cheng Marc Sarrel

Jet Propulsion Laboratory Jet Propulsion Laboratory
4800 Oak Grove Dr. 4800 Oak Grove Dr.
Pasadena, CA 91109 Pasadena, CA 91109
Leo.Y.Cheng @jpl.nasa.gov Marc.A.Sarrel@jpl.nasa.gov

Abstract

Managing the specification of input data in the uplink
subsystem has always been nontrivial—multiple
applications must use a correct and consistent file set that
changes as sequence development progresses in time. It is,
however, important since misconfiguration introduces risk
and requires rework. The distributed operations
environment of the Cassini-Huygens project provides
additional challenges with remote users and remote
machines, multiple system architectures, and fewer
specialized operators. Because the lower cost paradigm for
mission operations was instituted after the mission concept
was in place, addressing this complexity in the ground
system has been problematic. The operations team thus
faces the conundrum of having neither the resources for
business as usual nor any significant funding for
simplification.

This paper reports on a simple, low-cost effort to streamline
the configuration of the uplink software tools. Even though
the existing ground system consisted of JPL and custom
Cassini software rather than COTS, we chose a glueware
approach--reintegrating with wrappers and bridges and
adding minimal new functionality. Highlights of the
restructured system include the following: (a) an electronic
version of the master list of correct ancillary files updated at
each stage of sequence development, (b) a script validating
the master ancillary list construction and verifying that
named files exist, (c) a translator to make a web page
reference from the master list, (d) a new tool which enables
single point construction for all applications of sequence
specific configuration files based on the master list of
correct files, (e) alterations to the configuration files
themselves and to already existing application wrappers so

that those sequence specific specifications can be used, (f) a
configuration file naming convention that allows easy
recognition of the appropriate configuration file for the
work at hand, (g) expansion of the project database to
include the master ancillary file lists and the configuration
files, (h) a logical file structure that provides the application
programs a single view of the ancillary files while allowing
different implementations in various subsystem
architectures, and (i) active maintenance of the ancillary
input files within the ground system in a manner expected
by the applications.

Available resources for development demanded a solution
that was inexpensive and evolutionary. By rethinking
procedures, making modest changes to existing components
of the ground system, and adding glueware, the
configuration of uplink software applications was
simplified and made more consistent. Cost savings result
from eliminating redundant effort, increasing efficiency
with simple automation, reducing risk, and saving disk
space and bandwidth.

1. Evolution of the Configuration Process

During the cruise phase of the Cassini mission, while there
was limited science activity and little overlap in develop-
ment of different sequences, support for configuration of
the sequencing software was minimal. The lead engineer
for the sequence, in conjunction with mission planners,
determined the correct ancillary files to use and published
this list (in pdf format) on the web site for the particular
sequence. Each user acquired the necessary files, mostly

from the project database with occasional out of the
ordinary exceptions, and constructed configuration files as
needed. While there was no compelling need to alter this
approach, weaknesses did appear. Users complained that
the applications were hard to initialize. Some were
uncomfortable dealing with configuration files at all. With
users operating on multiple systems at both local and
remote sites, obtaining the files was occasionally
problematic. Rare errors of configuration were observed.
Also, the process was inefficient. The same tasks of
obtaining the files and constructing the configuration file
had to be done independently by each user. At this point in
the mission, though, the savings from centralizing and
automating these tasks could not offset the costs of
addressing the inefficiency.

When detailed development of the Cassini tour began in
May 2002, the complexity of the configuration process took
a sudden jump, with more users working to tighter timelines
on more simultaneous sequences. Almost immediately, the
lead engineers realized that a central configuration file was
essential, although their concern was mostly to ensure use
of correct files rather than to save time or effort. They
began to hand construct sequence specific configuration
files for the two most heavily used applications. While this
represented a noticeable improvement for the user com-
munity, the work represented a burden to both the people
tasked with constructing them and to the sequencing
software system engineers for support of that construction.
Also, dealing with each sequence and each application
independently introduced complications. Each application
required a separate process for constructing its configu-
ration file, but the ancillary files specified within had to be
consistent. Each sequence required a unique set of ancillary
files, but with appreciable redundancy from one sequence
to the next. In locally managed systems, this resulted in
noticeable consumption of disk space by duplicate files.

As experience grew, the need for a system-engineered
solution became obvious. However, the resources to
achieve such a solution were negligible. A working group
was convened to identify a new low-cost process for
managing the ancillary files required by the sequence
software system. Changes had to address the above
concerns with minimal disruption of the larger processes
into which they would be integrated.

To distribute the implementation work and allow for
incremental development, we chose to use glueware. A
handful of minor modifications to custom Cassini software
and existing wrappers were augmented with wrappers and
bridges in PERL and minimal new functionality.

2. Components of the Glueware System

Our first step was a fundamental but uncomplicated
restructuring of the Cassini ground system, creating a new
component to hold the ancillary files where they could be
actively maintained with little effort and would be
accessible to software users with minimal or no action on
their part. A logical structure was defined so that
application programs have a single view of the file system.
The branches of this ancillary file tree are illustrated in
Diagram 1.

Mul
Cass
A se
at JP
that
inde

ac

The

sp

The
Cass
chal
subs
resp
the t
with
Diagram 1. The Ancillary File Structure

NAIF
ephemeris
leapseconds
planetary constants
frame kernel
instrument kernel
clock

DSN
allocation
viewperiod

NAV
geometry
lighttime

SPACECRAFT OPS
turn limits
clock

UPLINK TEAM
initial conditions

SCIENCE PLANNING
epochs

Italicized files are links to project database at
JPL, actual files at distributed sites.
Non-italicized are files everywhere.
tiple physical implementations were required since
ini does not have a single ground system architecture.
parate approach was required for the Cassini networks
L, for the approximately 25 machines at remote sites
are managed by JPL, and for the remote sites that are
pendent. The master file tree was created in JPL afs

e. At each distributed site, the tree is locally replicated.

ibuted

 new

d.
synchronizer script (#5 in Diagram 2) is built over

on-going synchronization of the file trees on distr
ini hardware with the master tree at JPL proved
lenging because there was no ownership of the
ystem within operations and no development
onsibility between deliveries of the software. To make
ask easy enough that the lead engineer could include it
 his responsibilities, another glueware piece was adde

ssh
rsync

1. Validator

4. Config File
Generator

Master Ancillary File List
for Sequence N

Lead Engineer
for Sequence N

Config Files
for Sequence N

DIAGRAM 2. PROCESS FOR MANAGING
CONFIGURATION OF SOFTWARE APPLICATIONS

Master Ancillary File Tree

Project DB

7. Master List
Web Posting

Config Files
for Sequence N

Config Files
for Sequence N

Local Copy
Master Ancillary File Tree

Config Files
for Sequence N

Local Copy Master
Ancillary File Tree

Mission Planner

Remote Site User with
non-Cassini h/w

Sequence results

Uplink
Applications

Sequence results

Uplink
Applications

Cassini Remote Site User

JPL User

Sequence results

Uplink
Applications

5. Synchronizer

web download

6. Bundler

3. Publisher

2. Installer

glueware
KEY

rsync, an open source utility for fast incremental file
transfer. The script loops through the list of machines to be
synchronized, trying each three times to overcome transient
network problems. Since the connection is established
usingssh, and the ssh agent employs public key
authorization, the authority of the script user to make the
changes needs to be established only once per execution
rather than once per machine. The script also sends email
notification, once at start and again at finish with a
summary of results.

Rsync was chosen because of several advantages over a
simple secure copy, particularly when implemented with
conservative choices in its options. Checksum verification
can be required rather than relying simply on timestamp
and file size. If files are the same, no action is taken. If files
are different, only differences in the files are transmitted
over the link. When a file is added to the master tree, it is
also added at the remote site; likewise, when a file is
deleted from the master tree, it is removed at the remote
site. Rsync will make an actual copy of the file on the
remote site when the file at the master site is an “unsafe”
link, i.e. outside the directory subtree which is being
synchronized, as is the case for many of the files in the
master ancillary file tree. For initial installation, the total
size of the files transferred was about 130 Mbytes. The total
time for full transfers to all machines was about four hours
and fifteen minutes. The variation across the distribution of
Cassini sites is shown in the table below.

LOCATION TRANSFER TIME
JPL 3 minutes
United States 10 to 15 minutes
Europe 25 minutes

If no files need to be transferred, each machine, regardless
of location, takes about 30 to 45 seconds. Experience has
born out the expectation that rsync will be a thorough and
efficient choice for synchronizing the file trees at the
remote sites.

For users with non-Cassini hardware, the file tree structure
was included with the latest revision of the downloadable
version of the software. Sequence specific updates are made
available via the download website. These updates consist
of a tar bundle of files that will eventually be created by one
of the glueware pieces, the bundler script (#6 in Diagram
2). The bundling includes the actual files for those in the
master tree where the file is actually a link to the database.

The next step was to enable the applications themselves and
the existing wrappers that invoke them to employ the
ancillary files. The goal was to encapsulate all data that
could change from sequence to sequence, i.e. independent
of software deliveries, in files in the ancillary system. The
needed changes required were modest. Largely, these could

be accomplished by changing the configuration files and
templates to refer to the ancillary file system rather than to
local files. For the Pointing Design Tool in some limited
instances, however, the configuration file had previously
contained the actual data, e.g. for rate and acceleration
limits, rather than referencing a file with that data. The
capability was therefore added to specify a file within the
configuration file that the reader would open and process as
though that data had been within the configuration file
itself. For the Science Opportunity Analyzer, the
configuration file provides both application load
instructions and user file selections. Here it was necessary
to divide the configuration file into the items that are
sequence specific and therefore refer to the ancillary files
and into the load instructions. Although this work is not
completed, the configuration file will be melded of these
two pieces by the wrapper runscript that invokes the
application. A similar separation into a data file of the
sequence specific items for seq_gen, the sequence generator
application, had previously been undertaken, so the only
change for the ancillary file system was in the path
specification in the data file.

To this point, the file system had been established and the
software prepared to take advantage of it. The final task
was to ensure that configuration files were available for the
sequencing applications that specified a correct, consistent
set of files. Step one was to define a configuration file
naming convention making obvious the connection of the
file to the port, phase, and sequence to which it applied.
Next was the conversion of the master list of ancillary files,
which had previously been a paper product, into an
electronic list. The file types were assigned keywords so
that the association between the master list and
configuration file would not be ambiguous and so that the
master list would have a known, parsable structure.
Automation of the master list was ruled out because of the
decision making involved; however, some potential
software checks on the consistency of the file set have been
identified and may be added to future versions.

Another piece of glueware, the validator (#1 in Diagram 2),
checks the master list for correctness and completeness,
verifying that all keywords are present and not duplicated.
It also confirms that the named files exist.

For files that are in the project database but not in the
ancillary file tree, the installer (#2 in Diagram 2) creates a
new link between the master ancillary file tree and the
project database where possible. For those whose format is
different in the ancillary system (e.g. binary ephemeris
files) the installer copies the file from the project database,
then converts to the appropriate format.

When the list is ready, Mission Planning is notified. The
mission planners play a significant role in determining the

correct set of files to use. In addition to reviewing the
master list, they will use a script of their own devising (#7
in Diagram 2) to translate the master list into a web posting
for a second method of access.

The configuration file generator produces sequence specific
configuration files for the uplink applications. It currently
consists of a separate script for each application but will be
consolidated into single point construction of the set of
consistent configuration files. Each script uses the
keywords in the master file list to transform a template for
the application into a configuration file that specifies the
files in the master list. The lead engineers have expressed
appreciation for the elimination of formatting, syntax, and
spelling errors that occurred in hand constructed files.

Storage and distribution of the master file list and the
configuration files was accomplished by adding collections
for these files to the project database. While not every user
of the applications has access to the project database, each
instrument team already had in place a mechanism for
redistributing the configuration files to their members
without access. In Diagram 2, this is illustrated by the
transfer of config files from the Cassini remote site user to
the remote site user without Cassini hardware.

3. Reduced Costs

The benefits of the new process for managing ancillary files
are in two realms—timesavings and risk reduction. The
savings from labor reduction accrued from consolidating
tasks that had been repeated by each user and from
developing simple automation for tedious tasks.
Consolidation of the files also saved IT costs by slowing
demand for disk space, a chronic problem in the Cassini
environment. The synchronization effort saved bandwidth
by minimizing data transferred and making the transfer
once per machine independent of the number of users
relying on that machine.

Using the old process labor expended was as follows: The
preparation of the configuration files without the glueware
took approximately a half-day each time. For local users,
obtaining the specified files and modifying the
configuration file for the local setup took on the order of .5
hour. For remote Cassini users, the time estimate for this
task was slightly higher due to increased effort to obtain the
files. For remote users without Cassini hardware, adjusting
for local differences added at least fifty percent to the local
estimate for setup. Additional time was spent by system
engineers in the tool development organization on analysis
and correction of configuration file errors.

A conservative estimate of the cost savings is 1.3 work
years. For the rest of the mission, there will be a minimum

of 111 iterations of this process (29 sequences remaining in
advance planning plus update and final sequence
development for each of the 41 tour sequences). Early
evaluation suggests at least a two-hour savings in the
configuration file generation. The savings by users would
be 111 × the number of users, which varies from sequence
to sequence. However, with twelve instruments, opnavs,
and downlinks there are at least fourteen users who would
save most of the half hour and twelve who would save most
of the longer setup. The need for system engineering should
vanish, which is fortunate since funding for that function
does not last until the end of mission.

The risk reduction accrues from using software checks to
ensure that the files specified are consistent across
applications. With the new process, the single act an end
user has to take to employ correct files is to obtain the
configuration file labeled for the sequence on which he is
working. The rewards of this design will increase as the
number of simultaneous sequences in development
increases to as many as five. The process also ensures that
there is an accessible, historical record of the files that were
specified at each step in the development of a sequence.

4. Future Enhancements

As noted above, development of some of the pieces
described is still in progress. Also, further thought will be
given to the following improvements:

1. Using data within the ancillary files to check for
consistent sets.

2. Making the set of tools for construction of the
configuration files and setup of the ancillary files
more integrated and easier to use.

3. Providing ancillary file tree synchronization via
rsync to users with non-Cassini hardware.

5. Acknowledgements

The development described in this publication was carried
out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration.

The authors wish to thank the following contributors to the
new process:

̶ The other members of the working group.

̶ The system administrators and CM engineers who
assisted in setting up the file space and creating
links to it: Dave Coppedge, Nick Patel, and Sheila
Chatterje.

̶ The Pointing Design Tool (PDT) developers, Jeff
Boyer, Joel Reynolds, and Kevin Yau, who added
the needed changes to their next delivery with no
schedule relief.

̶ The lead engineer, Jennifer Long, who first

exercised the glueware.

6. Conclusion

A new process for managing the configuration of uplink
applications was implemented at low cost with glueware.
As a result, the lead engineers have software support for
specifying the desired configuration of the uplink
applications. The end users spend less effort to configure
the applications and have less opportunity to make mistakes
in file specification. Cassini benefits with cost savings from
labor and risk reductions.

	Abstract

